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R Schäfer1, T Gorin2, T H Seligman3 and H-J Stöckmann1
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Abstract
The scattering matrix was measured for microwave cavities with two antennae.
It was analysed in the regime of overlapping resonances. The theoretical
description in terms of a statistical scattering matrix and the rescaled Breit–
Wigner approximation has been applied to this regime. The experimental
results for the auto-correlation function show that the absorption in the cavity
walls yields an exponential decay. This behaviour can only be modelled
using a large number of weakly coupled channels. In comparison to the auto-
correlation functions, the cross-correlation functions of the diagonal S-matrix
elements display a more pronounced difference between regular and chaotic
systems.

PACS numbers: 05.45.Mt, 03.65.Nk

1. Introduction

The correlation hole as seen in the Fourier transform of the stick spectrum of a closed
Hamiltonian quantum system is particularly sensitive to long range spectral correlations,
typical of random matrix models. This behaviour in turn is indicative of chaos in the classical
equivalent of the system via the quantum chaos conjecture [1, 2]. Extensive work on the
detection of such correlations using the correlation hole has been done in molecular physics
[3–5], nuclear physics [6] and in the analysis of spectra from microwave cavities [7] and
optical resonators [8]. As the energy spectrum often is not available, Jost and Lombardi have
focused attention on the analysis of intensity spectra early (see e.g. [9]).

The Fourier transform σ̂α(t) of the intensity spectrum σα(E) = ∑
i α2

i δ(E − Ei) for a
system with eigenenergies Ei and a state with amplitudes αi yields

0305-4470/03/123289+14$30.00 © 2003 IOP Publishing Ltd Printed in the UK 3289

http://stacks.iop.org/ja/36/3289


3290 R Schäfer et al

ĉA(t) = |σ̂α(t)|2 =
∑

i

α4
i +

∑
i �=j

α2
i α

2
j e2π i(Ei−Ej )t . (1)

The inverse participation ratio
∑

i α4
i is 3/(N + 2) for a random state. Averaging over a

Gaussian orthogonal ensemble (GOE) in the large N-limit leads to NĉA(t) = 3−b(t). Here N
is the dimension of the matrices and b(t) is the two-point form factor of the GOE [10]. For the
corresponding stick spectrum 1−b(t) is obtained instead. For intensity spectra the correlation
hole is thus reduced to 1

3 of its full value. This reduction makes the detection of the correlation
hole difficult. In [7] Alt et al discuss different ways to overcome this basic problem, which
becomes more acute if cross sections are considered. Indeed, in the case of cross sections, the
use of auto-correlation functions was shown to be of very limited efficiency.

The cross correlations of independent intensity spectra, by contrast, display the full
correlation hole. Indeed, performing the GOE average we find, instead of an inverse
participation ratio, the product of two vector norms, i.e.

ĉC(t) = σ̂ ∗
1 (t)σ̂2(t) =

∑
i

α2
i β

2
i +

∑
i �=j

α2
i β

2
j e2π i(Ei−Ej )t (2)

where βi refers to the component of the second state. Therefore the cross correlation behaves
as 1 − b(t).

This simple fact has led to a detailed study of the possibility to observe the correlation
hole in correlation functions of total and partial cross sections [11]. To allow a comparison
with regular systems, the Poisson orthogonal ensemble (POE) was used. It combines random,
statistically independent eigenvalues [12] with orthogonally invariant eigenvectors [13]. The
POE does not have the universal implications of the GOE, both because the assumptions about
spectral statistics are less well founded, and because we may easily encounter situations of
preferred coordinate systems. Nevertheless, it is the best random matrix model for integrability
that is available. Indeed cross correlations prove to be the tool of choice to detect the correlation
hole. Clearly the main interest of such an analysis results when the total absorption, i.e. the
sum over all transmission coefficients, is fairly large, which implies that the average total
width � is large compared to the mean level spacing d.

In the present paper, we analyse the total cross sections of several normal-conducting
microwave resonators with two antennas, obtained from measurements of the scattering matrix
(S-matrix) via the optical theorem. The spectra of the studied systems exhibit different types
of statistics, ranging from POE to GOE behaviour. The wall absorption is significant and is
either comparable to or much larger than the transmission of the antennas. This leads us from
resonances with small overlap to such with very strong overlap. Absorption channels are not
directly accessible to experiments.

Our experiments address two interesting and quite general questions: on one hand, we test
the use of cross-correlation functions to identify the effect of correlations in the spectrum of a
chaotic Hamiltonian in the case of overlapping resonances. The results of [11] are compared
with the data. On the other hand, we investigate whether absorption has to be included in
terms of many weak or few strong channels, or whether the two cases cannot be distinguished.
For this purpose we extend the results of [11] to include an infinite number of weak channels,
which are shown to cause an exponential decay of the correlation functions.

In section 2 we recall some basics of random matrix scattering theory and some results
of [11] that are essential to our analysis, and we discuss the effect of a large number of
channels with small absorption. In the following section, the experimental setup and the
studied billiards are explained. In sections 4 and 5 we shall see that the signatures of chaos are
more pronounced in the cross correlation than in the auto correlation. Further, we show that a
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description of absorption in terms of many channels is essential to obtain agreement with the
experiment even in cases where the total absorption is of order 1.

2. Basics of scattering theory and theoretical developments for absorption channels

There is an exact correspondence between the stationary classical wave equation of an ideal
quasi-two-dimensional microwave cavity and the stationary Schrödinger equation for a two-
dimensional quantum billiard of the same shape. This correspondence includes the scattering
situation, by taking the antennas explicitly into account [14], and ultimately even absorption
phenomena.

The S-matrix for this situation is frequently used to describe resonant scattering arising,
e.g., in nuclear, atomic or mesoscopic systems [15]:

S(E) = 1 − iV T 1

E − Heff
V Heff = Hint − i

2
V V T . (3)

Here, Hint is the Hamiltonian describing the closed billiard, and V is an N × M matrix, which
couples the N interior wavefunctions to M decay channels. For each antenna we need one
channel or column vector, where the components Vja are proportional to the amplitude of the
billiard eigenfunction at the position of the antenna,

Vja ∝ �j(�ra) (4)

provided that the diameter of the antennas is small compared to the wavelength. This
approximation may only be used in regions far from any thresholds, and the proportionality
‘constant’ typically varies slowly with frequency [16]. If symmetry equivalent positions of the
antennas are avoided, then typically the column vectors of V are approximately orthogonal to
each other. Though not essential, this assumption simplifies the theoretical analysis.

It is convenient to work in the eigenbasis of the closed system Hint. Then the scattering
matrix depends on the eigenvalues of Hint and on the coupling amplitudes, defined in
equation (4). The analysis of the experiment is carried out in the framework of random matrix
theory, where chaos is represented by a GOE and integrability by a POE. The two ensembles
differ only in the distributions of the eigenvalues, while orthogonal invariance implies in both
cases that the columns of the matrix V are distributed according to the invariant measure of the
orthogonal group. In practice, we use independent random Gaussian variables for the matrix
elements, an approximation that becomes valid for large N.

We first present some elementary results of scattering theory using the notation of [11].
From equation (3) the cross sections are derived as

σab(E) = |δab − Sab(E)|2. (5)

Note that the experimental setup allows us to measure Sab directly. This avoids the difficulties
related to the measurement of total cross sections. The optical theorem establishes a linear
relation between the S-matrix elements and the total cross sections:

σ
(a)
tot (E) = 2(1 − Re Saa). (6)

The first quantity to study is the average S-matrix. The average can be a spectral average
(denoted by 〈· · ·〉), an ensemble average ( · · ·) or a combination of both. For the average
S-matrix all these averages must coincide. In [17] it has been shown that

Saa(E) = 1 − κa

1 + κa

(7)
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if S(E) is real and diagonal in the block of observable channels. The κa are real and positive
parameters and relate to the coupling constants Vja and the transmission coefficients Ta,
respectively, via

κa = π

2d

〈
V 2

ja

〉
Ta = 4κa

(1 + κa)2
. (8)

The analysis will be performed in terms of correlation functions in the time domain,

Ĉ
[
σ

(a)
tot , σ

(b)
tot

]
(t) = 1

L

{〈
σ̂

(a)
tot (−t) σ̂

(b)
tot (t)

〉
−

〈
σ̂

(a)
tot (−t)

〉 〈
σ̂

(b)
tot (t)

〉}
(9)

where σ̂ are Fourier transforms of the cross sections. The Fourier transforms are taken over a
window of size L. It should be large compared to the average level distance d but sufficiently
small so that the average S-matrix may be assumed constant.

Note that due to the optical theorem (6) the correlation function between total cross
sections is equal to the correlation function between the corresponding S-matrix elements:

Ĉ
[
σ

(a)
tot , σ

(b)
tot

]
(t) = Ĉ[Saa, S

∗
bb](|t|). (10)

For the GOE the correlation function can be calculated exactly, as shown below. For the
general case we rely on the rescaled Breit–Wigner approximation (RBWA) [11].

The rescaling is necessary, as soon as the transmission coefficients are not extremely
small. In the standard Breit–Wigner approximation, the average width of the resonances is
given by

〈�〉 = 2d

π

M∑
c=1

κc. (11)

Yet Ericson showed that in the limit of many channels of comparable coupling strength, the
correlation function of S-matrix elements or cross sections is proportional to e−�Ct . According
to this derivation [18, 19] �C should be equal to 〈�〉, but actually

�C = d

2π

M∑
c=1

Tc (12)

gives the correct value for the correlation width. The two expressions coincide only in the
limit where

∑M
c=1 Tc � 1. Thus the standard Breit–Wigner approximation is not valid in the

range we are interested in. Fortunately, it turns out that the rescaling κc → Tc/4 compensates
for this defect up to rather strong overlaps [11]. The RBWA has already been applied in the
regime of non-overlapping resonances [20], but without mentioning the difference to the usual
Breit–Wigner result.

In the case of the correlation functions (10), we first write the S-matrix elements (3) in
terms of the standard Breit–Wigner approximation. Then we plug this into equation (9) and
average over the spectrum of H0. At last we perform the rescaling to obtain

Ĉ
[
σ

(a)
tot , σ

(b)
tot

]
(t) = TaTb{〈gagb e−Gt〉 − 〈ga e−Gt/2〉〈gb e−Gt/2〉b2(t)} (13)

with G = ∑M
c=1 Tcgc. The normalized squared amplitudes V 2

ia

/〈
V 2

ia

〉
are replaced by random

variables gc. Due to the orthogonal invariance of the ensembles considered, these variables
are assumed to be Porter–Thomas distributed [19]. Note that different situations may occur in
the case of symmetries or integrable dynamics.

We account for wall absorption by introducing MW additional channels. The transmission
summed over all of them must equal the wall absorption,

TW =
MW∑
c=1

TMA+c (14)
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where MA = 2 is the number of antennas. If MW is small, the correlation functions depend on
all transmission coefficients individually, and no simplification is possible. However, if MW

is large, we may use that asymptotically

Ĉ[Sab, S
∗
cd ](t) → e−TW t Ĉ[S̃ab, S̃

∗
cd ](t) as MW → ∞ max

c>MA

(Tc) → 0 (15)

where S̃ab describes the scattering system with only MA channels, obtained by eliminating the
last MW columns in the coupling matrix V (see equation (3)). For the rescaled Breit–Wigner
result (13) this proposition follows from the central limit theorem.

For later use, we produce the result for the correlation function in the case of two antennas
with equal transmission coefficients T1 = T2 = TA. If the absorption in the walls is taken into
account in the many channel limit via equation (15), the ensemble averages in equation (13)
involve two random variables g1 and g2 only. Assuming that both are uncorrelated Porter–
Thomas variables, and using that G = TA(g1 + g2) + TW , one can evaluate the ensemble
integrals analytically. This yields

Ĉ
[
σ

(a)
tot , σ

(b)
tot

]
(t) = T 2

A e−TW t {(1 + 2δab)(1 + 2TAt)−3 − (1 + TAt)−4b2(t)}. (16)

In the GOE case, expression (15) can also be verified for the VWZ integral [21], which
gives an analytical expression for the exact correlation function in equation (10). The Fourier
transform of the VWZ integral reads [11]

C[Sab, S
∗
cd ](t) = 1

4

∫ t

max(0,t−1)

dr(t − r)(r + 1 − t)

M∏
e=1

[1 − Te(t − r)]U(r) (17)

where

U(r) = 2
∫ r2

0
dx

δabδcd	a	c + (δacδbd + δadδbc)
ab

(t2 − r2 + x)2
√

x(x + 2r + 1)

√∏M
e=1

(
1 + 2Ter + T 2

e x
) (18)

	a = 2Ta

√
1 − Ta

(
r + Tax

1 + Ta(2r + Tax)
+

t − r

1 − Ta(t − r)

)
(19)


ab = 2TaTb

(
TaTbx

2 + [TaTbr + (Ta + Tb)(r + 1) − 1]x + r(2r + 1)(
1 + 2Tar + T 2

a x
)(

1 + 2Tbr + T 2
b x

)
+

(t − r)(r + 1 − t)

[1 − Ta(t − r)][1 − Tb(t − r)]

)
. (20)

We split the products occurring in expressions (17) and (18) and consider that part running
over the absorption channels. In the asymptotic limit of equation (15), we find

MW∏
c=1

[
1 − TMA+c(t − r)

] → e−TW (t−r) (21)

MW∏
c=1

[
1 + 2TMA+cr + T 2

MA+cx
]−1/2 → e−TW r . (22)

The r-dependent exponentials cancel, which proves our conjecture for the GOE case.
It will be useful to investigate the effect of the number of absorption channels MW

on the correlation function. For this purpose, we assume the total wall absorption to be
fixed, TW = 1, and distributed equally among the absorption channels TMA+c = TW /MW .
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a b

Figure 1. Auto-correlation functions for the GOE case with two accessible channels (antennas)
with equal transmission coefficients TA = 0.26 and total transmission for the wall absorption:
TW = 1, where the wall absorption is equally distributed over MW channels. In (a) the VWZ result
is shown as dotted lines for MW = 1, 4, 16, 64, 128, and as a solid line for MW = ∞. In (b) we
compare the exact VWZ result (solid line) with the rescaled Breit–Wigner result (dotted line) for
MW = ∞.

Figure 1(a) shows the behaviour of the auto-correlation function for the case of two antennas
with TA = T1 = T2 = 0.26 for different values of MW . Note the significant changes in the
shapes of the curves when MW is varied. There are two previous microwave experiments
where the channel number dependence of the auto-correlation function was studied. The first
one by Doron et al [22] failed to see any difference between exponential and algebraic decay
behaviour [23]. However, in the more recent work by Alt et al [24] an algebraic decay of the
auto-correlation function was observed.

In figure 1(b) we compare the exact result with the result from the RBWA for MW = ∞
using the same values for TA and TW as in figure 1(a). The difference between the RBWA
and the exact result is very small. This permits us to use the much simpler and more flexible
RBWA in the analysis of our experimental data. For larger values of TA the RBWA is less
accurate than in the example above, but it can still be used to determine TW reliably from the
auto-correlation function. The accuracy of the RBWA is discussed in detail in [11].

3. Experiment

Since the experiment is described in detail elsewhere [25], we concentrate on the aspects
relevant in the present context. Reflection and transmission measurements have been
performed in microwave cavities of various shapes. All cavities are flat, with top and
bottom plate parallel to each other. The cavities are quasi-two-dimensional for frequencies
ν < νmax = c/(2h) (h—height of the billiard). In this regime, there is a complete equivalence
between the stationary wave equation and the corresponding stationary Schrödinger equation,
where the z component of the electric field corresponds to the quantum mechanical
wavefunctions,

	�(x, y) + E�(x, y) = 0 E =
(

2πν

c

)2

(23)

with Dirichlet boundary conditions. The antennas consisted of copper wires with a diameter
of 1 mm, projecting lp = 2 or 4 mm into the resonator. An Agilent 8720ES vector network
analyser was used to determine the complete S-matrix. Measurements were taken in the
frequency range from 1 to 16 GHz with a resolution of 0.5 MHz.
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Table 1. Details of the studied billiards with A—area, L—circumference, h—height of the billiard
and lp—the projection length of the antennas into the billiards.

Billiard type Shape Material A(cm2) L (cm) h (mm) lp (mm)

Rectangle 34 × 24 cm2 Brass 816 116.0 8 2

Robnik billiard λ = 0.4 Brass 474 77.5 8 2

Billiard with C3 symmetry Aluminum 2580 358.5 10 4

Fully chaotic billiard Aluminum 2580 358.5 10 4

The unwanted contribution of the cables to the S-matrix was removed by standard
calibration procedures. It was not possible, however, to get rid of the contribution of connectors
and antennas in this way. This posed a problem in particular for the reliable determination
of the phase, which is vital for the cross-correlation measurements. Therefore, the phase
shift from the antennas was determined from a reference measurement, where the cavity was
removed, and only the antennas and the supporting top plate were present. We checked that
the average S-matrix is in good approximation real and diagonal.

Four different cavities were used, which are presented in table 1. The rectangular and
the Robnik billiard both have fixed geometries. Therefore, no ensemble average can be taken
for these systems. Instead, we performed ten measurements with different antenna positions
on each system. By this we obtained ten spectra of essentially the same system (it is slightly
altered by the change of the antenna positions), but with different intensities for each of the
resonances.

The billiard with threefold symmetry has been discussed in detail in [26]. It is composed
of an outer part and an insert, both with C3v symmetry. By rotating the insert, we obtain an
ensemble of systems all displaying C3 symmetry. However, configurations with C3v symmetry
have been avoided. We performed 30 measurements with different rotation angles and fixed
antenna positions. The two antenna positions were in symmetry equivalent or non-equivalent
positions, alternatively.

The fully chaotic billiard is a variant of the C3 billiard, where the insert was placed out of
the centre avoiding any symmetry. We performed 50 measurements for different positions of
the insert. The classical dynamics for the latter two billiards is completely chaotic.

As described in section 2, the transmission coefficients TA of the antennas are obtained
from the average S-matrix (see equations (7) and (8)). In figure 2 the results for TA as a
function of frequency are shown for the rectangular and the fully chaotic billiard. One notes
a strong frequency dependence of the coupling. Such a behaviour is typical of wire antennas.
For each system, the two antennas yield approximately the same transmission coefficients.
In view of the frequency dependence of TA and a comparable one of TW to be discussed in
section 4, we examined frequency intervals with a width of 1 GHz to assure that the average
S-matrix and the total absorption are approximately constant.

The frequency dependence of the wall absorption is mainly due to the skin effect [27].
The additional width acquired by the resonances is

�W(α) = 8π2

c2
ν2 δ(ν)

h

(
1 +

hL

2A
ξ(α)

)
δ(ν) = 1√

πµ0σν
(24)
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a b

Figure 2. Transmission coefficient TA obtained from the average S-matrix for (a) the rectangular
and (b) the fully chaotic billiard.

where δ(ν) is the so-called skin depth, and µ0 and σ are the susceptibility and the conductance
of the cavity walls, respectively. The dimensionless quantity ξ(α) is of order 1. It depends on
the particular resonances, indexed by α.

To describe the wall absorption within our statistical model, we consider the average
�̄W and the variance (	�w)2 of the absorption width. The number of absorption channels
Meff

W (with equal transmission coefficients) can be determined taking into account that in the
statistical model �W is the sum of Meff

W random Porter–Thomas variables. In order to reproduce
the average absorption width and its variance, the following must hold,

1

Meff
W

= (	�W )2

�̄2
W

≈
(

hL

2A

)2

(	ξ)2 (25)

where (	ξ)2 is the variance of ξ(α) as it fluctuates for different resonances. As ξ(α) is of
order 1, its variance cannot be larger. Therefore, Meff

W � [2A/(hL)]2, which is greater than
200 for the studied cavities. This is certainly indistinguishable from an infinite number of
channels.

4. Auto-correlation function

In this section, we examine the Fourier transform of the auto-correlation function
Ĉ

[
σ

(a)
tot , σ

(a)
tot

]
(t) as given in equation (9). Figure 3 shows logarithmic plots of the auto-

correlation functions for the rectangular and the fully chaotic billiard together with the RBWA
for GOE and POE—assuming an infinite number of weakly coupled channels for the absorption
in the walls (see equation (16)). The results for the rectangular billiard do not allow us to
distinguish between GOE and POE behaviour due to their large fluctuations. At most we
can see a hint of the fact that the auto-correlation function for rectangular billiards tends to
2.25 instead of 3 as t → 0. For rectangular billiards the squared amplitudes (entering into
equation (13)) are not Porter–Thomas distributed, leading to an auto-correlation function that
is closer to the prediction for GOE than to that for POE.

The ensemble averaged auto-correlation function of the fully chaotic billiards shows
much smaller fluctuations, of course, and we observe a very good agreement with the GOE
prediction. The correlation hole can be seen in particular in the linear plot shown in the inset
of figure 3(b). However, the correlation hole is reduced to 1

3 of its full value (see section 1),
and the difference to integrable systems may be even smaller.
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a b

Figure 3. Logarithmic plot of Ĉ[σ (a)
tot , σ

(a)
tot ]/T 2

A for (a) the rectangular and (b) the fully chaotic
billiard obtained from Fourier transforms over the frequency ranges 13 to 14 GHz and 14 to
15 GHz, respectively. The insets show the corresponding linear plots for small times t. The
theoretical prediction from the RBWA is shown for the GOE (solid line) and the POE (dashed line).
The parameters were TA = 0.261, TW = 1.38 for the rectangle, and TA = 0.848, TW = 14.92 for
the fully chaotic billiard.

a b

Figure 4. Transmission TW into the walls, obtained from a fit to the auto-correlation function for
(a) the rectangular and (b) the fully chaotic billiard.

The experimental auto correlation function follows the theoretical curve for an infinite
number of absorption channels over five orders of magnitude. Then the auto-correlation
deviates from the theoretical curve. This is a consequence of the finite frequency interval used
in the Fourier transform. The long-time behaviour is dominated by the Welch filter applied.
Comparison with figure 1 shows that more than 100 weakly coupled channels have to be
assumed to explain this behaviour, but the simplifying assumption of infinitely many channels
is in accordance with the experiment as well. Further, we observe that the RBWA is sufficient
to describe the experimental results.

As the antenna transmission TA has been obtained independently, the wall transmission TW

can be determined by fitting the experimental auto-correlation function with the corresponding
rescaled Breit–Wigner expression. This procedure works well for a large frequency range,
and all results presented in this paper have been obtained in this way. In the low frequency
regime, however, a two-parameter fit of the auto-correlation function, treating both TW and TA

as free parameters, yielded somewhat better results. Figure 4 shows the frequency dependence
of TW , as determined from the auto-correlation function, both for the rectangular and for the
fully chaotic billiard.
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a b

Figure 5. Cross-correlation function Ĉ[σ (a)
tot , σ

(b)
tot ]/T 2

A for the fully chaotic billiard, averaged over
50 realizations, (a) before smoothing and (b) after smoothing. The Fourier transform was taken
over the frequency range of 14 to 15 GHz. The RBWA is shown for the GOE (dotted line) and for
the POE (dashed line) with TA = 0.848 and TW = 14.92.

5. Cross-correlation function

We now present cross-correlation functions Ĉ
[
σ

(a)
tot , σ

(b)
tot

]
(t) of the total cross sections, which

are equivalent to those of the respective diagonal S-matrix elements, see equation (10).
Figure 5 shows Ĉ

[
σ

(a)
tot , σ

(b)
tot

]/
T 2

A for the fully chaotic billiard. The dotted and the dashed
lines correspond to the expectation from the RBWA.

Even after averaging over 50 realizations the fluctuations are still quite strong. Therefore
we apply a smoothing over an interval of size ln 2/TW , leading to the smooth behaviour
displayed in figure 5(b). All results presented below are smoothed in this way.

Figure 6 shows the smoothed results for the fully chaotic billiard both in linear and
logarithmic plots for three different frequency regimes. In contrast to the expectation for
integrable systems, the cross correlation is suppressed for small times t. The measurement
thus clearly exhibits the correlation hole expected for chaotic systems. In particular, the
logarithmic plots demonstrate that the experimental results are in good agreement with the
RBWA for the GOE over several orders of magnitude, and clearly distinguishable from
the POE expectations. For higher frequencies the absorption increases, resulting in a higher
value for TW and thus a sharper decline of the cross correlation.

As an example for an integrable system, we present the cross-correlation function for the
rectangular billiard in figure 7(a) together with the RBWA for the GOE and the POE. The
difference to chaotic systems is clearly seen. The discrepancy of our results from the POE is
not surprising, because the antennas disturb the system, leading to a shift of resonance positions
and thus to correlations in the spectrum. The intermediate situation is shown in figure 7(b) for
the Robnik billiard with mirror symmetry and non-symmetric antenna positions. For λ = 0.4
the classical phase space of the Robnik billiard is chaotic [28], apart from possible tiny stability
islands [29]. Additionally, the theoretical result for the superposition of two GOE is plotted
as dash-dotted line. In this case, the two-point form factor b2(t) for the GOE in equation (16)
has to be replaced by b2(2t).

In systems with point symmetries caution is commanded with respect to the antenna
positions, because the amplitudes at symmetric antenna positions are strongly correlated. This
is illustrated in figure 8 showing the cross correlation for the billiard with C3 symmetry both
for symmetric and asymmetric antenna positions. In addition to the POE and GOE curves, the
rescaled Breit–Wigner expectation for the C3 billiard is shown. For the two-point form factor
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a b

c d

e f

Figure 6. Cross-correlation function Ĉ[σ (a)
tot , σ

(b)
tot ]/T 2

A for the fully chaotic billiard, plotted linearly
(left column) and logarithmically (right column), where the Fourier transform was taken over three
different frequency regimes. (a), (b): ν = 8.5 to 9.5 GHz, TA = 0.234, TW = 6.79; (c), (d): ν =
11 to 12 GHz, TA = 0.52, TW = 8.26; (e), ( f ): ν = 14 to 15 GHz, TA = 0.848, TW = 14.92. The
RBWA is shown for the GOE (dotted line) and for the POE (dashed line).

in equation (16) the results from [26] are used,

bC3
2 (t) = 1

3

(
bGOE

2 (3t) + 2bd
2

(
3t

2

))
(26)

where bGOE
2 (t) is the two-point form factor for the singlet GOE spectrum and

bd
2(t) = −e−8π2	t2

+ 2 e−4π2	t2
bGUE

2 (t) (27)

is that for the doublet GUE spectrum. The parameter 	 = 0.125 accommodates the splitting
of the doublet spectrum due to symmetry breaking.

For asymmetric antenna positions, a good correspondence between experiment and theory
is found, but for symmetric positions there are dramatic deviations. In the ideal case, one
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a b

Figure 7. Cross-correlation function Ĉ[σ (a)
tot , σ

(b)
tot ] for (a) the rectangular and (b) the Robnik

billiard with the Fourier transform taken over the frequency range 13 to 14 GHz. Dotted and
dashed lines are the RBWA results for GOE and POE, respectively. The dash-dotted line in (b)
corresponds to the RBWA for two GOEs (see text). The parameters were TA = 0.261, TW = 1.38
for the rectangular, and TA = 0.254, TW = 1.39 for the Robnik billiard.

a b

Figure 8. Cross-correlation function Ĉ[σ (a)
tot , σ

(b)
tot ] for the C3 billiard with (a) asymmetric and

(b) symmetric antenna positions, with the Fourier transform taken over the frequency range 14 to
15 GHz. Dotted and dashed lines are the RBWA results for GOE and POE, respectively. The
dash-dotted line in (b) corresponds to the RBWA for the C3 billiard (see text). The parameters
were TA = 0.877, TW = 15.84 for (a), and TA = 0.860, TW = 15.61 for (b).

would expect a result that is much closer to the auto-correlation function, but small deviations
from symmetry induce uncontrollable variations.

6. Summary and outlook

We have measured the diagonal S-matrix elements of two channels as a function of frequency
for a variety of different microwave cavities with and without symmetries, and with integrable
or chaotic classical dynamics. They displayed different amounts of resonance overlap and
antenna coupling. Via the optical theorem, the diagonal S-matrix elements contain the same
information as the total cross sections.

We discuss the experimental results in terms of auto-correlation and cross-correlation
functions in the time domain. The wall absorption of the billiards is expressed in terms of
unmeasurable channels. We find that an exponential decay of correlations, corresponding
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to infinite channels, describes the experimental results adequately. Comparison with the
rescaled Breit–Wigner approximation for random matrix models shows good agreement with
experiment, if we use the wall absorption as a fit parameter. The cross correlation was expected
to display the difference between integrable and chaotic systems more clearly than the auto
correlation. Indeed, our experiments confirm that the correlation hole is more pronounced in
the cross-correlation function.

Due to the optical theorem, total cross sections are accessible via the measurement of
reflection matrix elements for microwave cavities. This is in contrast to particle scattering
experiments, where total cross sections can only be measured in exceptional cases and their
measurement in two different entrance channels is even more difficult. In these experiments
only partial cross sections are available. Theory [11] suggests that the correlation hole should
be best observable in correlations between cross sections without any coinciding channel
indices. The simplest case of this type is the cross-correlation function of different elastic
cross sections.
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